The Global Invasive Species Programme GISP • c/o CABI - Africa • P.O.Box 633-00621 • Nairobi • Kenya Located at the ICRAF Complex • United Nations Avenue • Gigiri • Nairobi • Kenya Tel: +254 – 20 – 722 4450/62 • Fax: +254 – 20-7122150 • E-mail: gisp@cybersmart.co.za # ASSESSING THE RISK OF INVASIVE ALIEN SPECIES PROMOTED FOR BIOFUELS #### **CONTEXT** Many countries are currently looking at growing high-yielding crops for the production of biofuels as alternatives to traditional fuels (petrol and diesel) to address imminent shortages and reduce impacts of climate change. If these initiatives are not carefully assessed, however, promoting the cultivation of some popular species for biofuel production will increase two of the major causes of biodiversity loss on the planet: clearing and conversion of yet more natural areas for monocultures, and invasion by non-native species. Habitat conversion is already the leading cause of biodiversity loss worldwide, and limiting the enthusiastic cultivation of new crops to areas already converted is not an easy or popular task. The issue addressed here, though, is that a number of the most commonly recommended species for biofuel production are also major invasive species in many parts of the world. Thus, they need to be assessed for the likelihood of invasion before being cultivated on a large-scale for biofuels production. Some of these species are spread by birds, small mammals and other animals, making their control difficult or impossible, with impacts increasing over time and long-term production prone to more financial losses than gains. This note provides basic information and recommendations for project proposals on biofuels using species that have a history of invasion and require careful management if they are to be used on a large scale and not contribute to natural habitat and biodiversity loss. #### **RECOMMENDED ACTIONS** The Global Invasive Species Programme has identified a number of actions to avoid impacts on biodiversity from the use of inappropriate species for biofuels and is ready to provide further support to countries on this issue. Specifically, the development of biofuels projects should consider: • Selection of low risk species: using information from popular biofuels species already listed above as many are already notorious as having a strong history of invasion in many parts of the world with similar climates and conditions to those where they will be planted in monoculture; - Information gathering: checking national noxious weed lists, databases and websites for references relevant to the countries where biofuel plantations are proposed; - Risk assessment: using risk assessment protocols to evaluate the risk of invasion by species in biofuel proposals, especially from countries with less experience in addressing biological invasions or screening for impacts on biodiversity; - Risk management: including monitoring and contingency planning in proposals for biofuels, especially for control in cases of escape and according to results of risk assessments. Control procedures have to be viable and well-tested, so invading species dispersed by animals and other active means must not be used without a tried and tested contingency plan for escapes; - Benefit/cost analysis: performing market studies and presenting business plans that can show real benefits for the proposed activities before funds are made available, as there are many known cases of introduced species that never achieved commercial value (but still remained as problems); and - Use of native species wherever possible: creating incentives for the development and use of native and non-invasive species that pose the lowest risks to biodiversity. The Global Invasive Species Programme recommends that countries do not develop activities that are based on the use of known invasive species for biofuels production programmes. The risks to biodiversity are just too great. Recognising the reliance on biodiversity by many millions of people, especially in developing countries, GISP feels that risk assessment, monitoring and contingency planning are justified and should be mandatory for the support of projects to grow biofuels *en masse* – as the inadvertent introduction of invasives species may result in diminished livelihoods, reduced development and more inroads into biological diversity. #### **SPECIES THAT POSE RISK** The following table lists species recommended for biofuel production in different countries and provides a preliminary categorization regarding their potential degree of risk. ### SPECIES USED OR BEING CONSIDERED FOR BIOFUEL PRODUCTION Categories are: - 1 Species being cultivated and already known to be invasive 2 Species not yet being cultivated but indicated for biofuels 3 Species being cultivated but not yet expressed as invasive 4 Species that are not prone to invasion | Species | Common name | Native range | Habitat
type | Invasive in | Vectors | Category | Reference | |---------------------------------|-----------------|--|--------------------------------------|---|---------------------------------|----------|------------------------------------| | Amelanchier canadensis | Serviceberry | North America, Europe,
Asia | temperate
forests | United States | Animals | 1 | Biomass 9 (1986)
49-66 | | Artocarpus communis, A. altilis | Breadfruit | Pacific Islands,
Southeast Aisa | | Fiji, Kiribati, Line
Islands | | 1 | www.hear.org/pier | | Arundo donax | Giant reed | Eurasia | Wetlands
and
riparian
areas | United States,
Mexico, the
Caribbean, Southern
Europe, South
Africa, Thailand,
Australia, New
Zealand, Hawaii | Water
(vegetative
spread) | 1 | Global
Compendium of
Weeds | | Azadirachta indica | Neem | India, Burma, Sri
Lanka, Myanmar,
Bangladesh | Arid lands | West Africa;
Australia, Fiji,
Mauritius | Birds, Bats | 1 | Global
Compendium of
Weeds | | Brassica napus | Rapeseed/canola | Eurasia | Well-
drained
soils | Australia, Ecuador,
Fiji, Hawaii, New
Caledonia | | 1 | | | Camelina sativa | False flax | Eastern Europe and
Southwest Asia | Well-
drained
soils | North America,
Western Europe,
Australia, Central
America, South
America, Japan | | 1 | Feb. 2007
Biodiesel
Magazine | | Cocos nucifera | Coconut | Unknown | | Australia, United
States, Micronesia,
Japan | | 1 | | | Crataegus spp. | Hawthorn | North America, Europe,
Asia | | Australia, United
States | Birds,
mammals,
insects | 1 | Biomass 9 (1986)
49-66 | | Diospyros virginiana | Persimmon | Eastern United States | Bottomland
swamps,
along
stream
banks, in
upland
forests, in
fields, pine
woods, and
dry scrub
lands | | Animals+F32 | 1 | | |------------------------|----------------------|-----------------------------------|--|--|--|---|---------------------------| | Diospyrus kaki | Oriental persimmon | China, Japan | | | Insects | 3 | Biomass 9 (1986)
49-66 | | Elaeis guineensis | African oil palm | West Africa
(Madagascar) | Tropical
riparian
forests | Brazil, Micronesia,
Florida USA | Animals | 1 | | | Gleditsia triacanthos | Honeylocust | Eastern North America | Forests | Central Argentina,
South Africa,
Australia, USA, New
Zealand | Insects | 1 | | | Jatropha curcas | Physic nut | Tropical America | Arid and
semi-arid
lands | Australia, South
Africa, United States,
Pacific Islands,
Puerto Rico | Water and in
mud on vehicles
and machinery
or animals | 1 | | | Maclura pomifera | Osage orange | Central United States | Well-
drained
soil | Europe, USA,
Australia, South
Africa | Animals | 1 | | | Miscanthus x giganteus | Chinese silver grass | Asia | Well-
drained
soil | United States,
Australia | Wind | 1 | | | Morus alba | Mulberry | Asia | | Brazil, Ecuador,
United States | Animals | 1 | Biomass 9 (1986)
49-66 | | Olea europaea | Olive tree | Mediterranean Europe | Dry areas | Australia, Hawaii,
New Zealand | Animals | 1 | | | Panicum virgatum | Switch Grass | United States, Central
America | Prairies
and open
ground | Hawaiian Islands | Wind | 1 | | | Phalaris arundinacea | Reed canarygrass | Europe, Asia, North
America | Wetland | United States, South
Africa, Australia,
New Zealand, Chile,
most temperate
countries | Wind, water | 1 | | | Prosopis spp. | Mesquite | America | Arid and
semi-arid
lands | Eastern Africa
(Sudan, Eritrea,
Ethiopia, Djibouti),
Southern Africa,
India, Australia | Animals | 1 | | |---------------------------------------|-----------------------|--------------------------------------|--|---|----------------------------------|---|---------------------------| | Quercus acutissima | Sawtooth oak | Eastern Asia, Korea,
Japan, China | | North America,
Europe | Wind, squirrels | 1 | Biomass 9 (1986)
49-66 | | Ricinus communis | Castor bean | East Africa | Riparian
areas | Many countries -
Brazil, Australia,
Pacific islands, New
Zealand, South
Africa, Mexico,
United States,
Western Europe | Animals and water | 1 | | | Rubus cf. fruticosus | Blackberry | North America and
Europe | Forests
and
prairies | One of Australia's 20
top weeds, New
Zealand, South
Africa, Western
Europe, United
States | Animals | 1 | Biomass 9 (1986)
49-66 | | Rubus idaeus | Raspberry | Eurasia | Forest
clearings
or fields | Western Europe,
Australia, Eastern
Europe, New
Zealand | | 1 | Biomass 9 (1986)
49-66 | | Sambucus canadensis | Elderberry | Central and North
America | Riverbanks
and forest
edges,
swamps | Australia | Birds | 1 | Biomass 9 (1986)
49-66 | | Sapium sebiferum/Triadica
sebifera | Chinese tallow | China, Japan | Wetlands
and
riparian
areas | United States,
Australia, Puerto
Rico | Birds | 1 | | | Sorghum halepense | Johnson grass | Mediterranean to India | Fertile
lowland
areas | United States,
Australia, Pacific
Islands, Central and
South America,
Indonesia, Thailand | Birds, livestock,
water, wind | 1 | | | Vaccinium cf. angustifolium | Blueberry | North America | | Germany | | 1 | Biomass 9 (1986)
49-66 | | Viburnum trilobum | Highbush
cranberry | North America | | | | 3 | Biomass 9 (1986)
49-66 | | Ziziphus mauritiana | Chinee apple,
jujube | India, China | Arid lands,
sandy,
well-
drained
soils and
do less
well in
heavy,
poorly
drained
soils | Australia, Africa,
Afghanistan, China,
Malaysia, northern
Australia, some
Pacific archipelagoes
and Caribbean
region | Insects and wind | 1 | Biomass 9 (1986)
49-66 | |----------------------|-------------------------|-----------------|--|--|------------------|---|---------------------------| | | | | | | | | | | Helianthus annuus | Sunflower | America | | | | 4 | | | Glycine max | Soy | Unknown | | | | 4 | | | Saccarum officinarum | Sugar cane | Unknown | | | | 4 | | | Ipomoea batatas | Sweet potato | South America | | | | 4 | | | Arachis hypogaea | Peanut | Brazil | | | | 4 | | | Triticum | Wheat | Unknown | | | | 4 | | | Sorghum bicolor | Sweet sorghum | Northern Africa | | | | 4 | | | Manihot esculenta | Cassava / yuca | Brazil | | | | 4 | | | Gossypium spp. | Cotton | Unknown | | | | 4 | |